Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents
Olive leaf, an agricultural by-product, was studied for the valorization of its biophenols using green extraction techniques; i.e. non-toxic and eco-friendly extraction solvents were used, involving water and glycerol. 2-hydroxypropyl-β-cyclodextrin (CD), was also employed as an enhancer of the extraction, since cyclodextrins (CD’s) are known to improve the extractability of olive leaf polyphenols by forming water soluble inclusion complexes. The process was optimized by implementing a central composite (Box-Behnken) experimental design and response surface methodology, taking into consideration the following independent variables: glycerol concentration (Cgl), CD concentration (CCD) and temperature (T). The evaluation of the extraction model was based on two responses: the total polyphenol yield (YTP) and the antiradical activity (AAR). Optimum values for the extraction process were obtained at 60% (w/v) glycerol content, T = 60 °C and 7% (w/v) CD content. LC-MS analysis was also applied in order to characterize the polyphenolic composition of extracts containing cyclodextrins. The main polyphenols present were oleuropein and oleuropein derivatives. Olive leaf aqueous extracts containing glycerol and cyclodextrins may be used as raw materials/ingredients for several end-users in the food, cosmetic and pharmaceutical industries.